Field Study

Two New Criteria of the Metabolic Syndrome: Prevalence and the Association with Brachial-Ankle Pulse Wave Velocity in Japanese Male Workers

Koichi Miyaki1, 2, Asako Hara1, Mariko Naito3, Toru Naito4 and Takeo Nakayama5

1Department of Preventive Medicine and Public Health, School of Medicine, Keio University, 2Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical & Dental University, 3Department of Preventive Medicine/Biostatistics and Medical Decision Making, Nagoya University Graduate School of Medicine, 4Section of General Dentistry, Department of General Dentistry, Fukuoka Dental College and 5Department of Health Informatics, Kyoto University School of Public Health, Japan

Abstract: Two New Criteria of the Metabolic Syndrome: Prevalence and the Association with Brachial-Ankle Pulse Wave Velocity in Japanese Male Workers: Koichi Miyaki, et al. Department of Preventive Medicine and Public Health, School of Medicine, Keio University—In 1998 and 2001, The World Health Organization and the National Cholesterol Education Program Adult Treatment Panel III proposed working criteria for the metabolic syndrome (MS), but they are not perfect for use in diverse ethnicities. In 2005, the International Diabetes Federation (IDF) and eight societies in Japan respectively proposed new criteria. However, there has been no report regarding the application of these new criteria in Japanese workplaces. We conducted a cross-sectional study of 377 healthy Japanese men aged 20–64 yr who worked in a chemical factory in Kanagawa, Japan. Participants completed a self-reported questionnaire, underwent a physical examination including waist measurements and brachial-ankle pulse wave velocity (baPWV), and provided overnight fasting blood samples. The prevalence of MS in Japanese men was 17.0% and 13.5% according to the new IDF and Japanese criteria respectively. In both of the new criteria, baPWV was significantly higher in those with MS than those without MS (1,563 ± 264.2 vs 1,362 ± 204.6 cm/sec, p<0.001 in the new IDF criterion; 1,574 ± 265.2 vs 1,368 ± 209.1 cm/sec, p<0.001 in the Japanese criterion). In the analysis of the 5 or 6 subgroups stratified according to the number of MS components, baPWV increased significantly with increasing number of MS components (p for trend<0.01 in both criteria). The new IDF and Japanese criterion are both good for diagnosing MS among Japanese because a linear increase in baPWV occurred with increasing MS components after adjustment for potential confounding factors. Further studies are expected using these new criteria. (J Occup Health 2006; 48: 134–140)

Key words: Metabolic syndrome, baPWV, New criteria, Japan

Metabolic syndrome (MS) is a cluster of metabolic disorders including central obesity, glucose intolerance, hypertension, and dyslipidemia. These traits occur simultaneously to a greater degree than would be expected by chance alone. Although the contribution of an individual trait may be small, multiple traits may act together and exert an even greater influence than any one trait alone.

The concept of MS has become well established, and several studies have suggested that subjects with MS are at an increased risk for type 2 diabetes and cardiovascular disease. However, there has been no uniform case definition for MS.

In 1998 and 2001, the World Health Organization (WHO) and the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) each proposed working criteria for MS. The NCEP ATP III report recommended the use of five variables for diagnosis of MS, including waist circumference, triglyceride level, HDL cholesterol level, blood pressure, and fasting glucose level. Subjects meeting three of these five criteria are classified as having MS. The WHO criteria are more complex because they take account of microalbuminuria and plasma insulin levels.
According to the NCEP ATP III and WHO criteria, several studies of the prevalence and characteristics of MS have been conducted among diverse ethnicities\(^{15-23}\). Some studies showed ethnic variation in the prevalence of MS\(^{15, 16, 23}\) and some studies which conducted in Asia suggested that the definition of central obesity recommended by the NCEP ATP III was inappropriate for Asian populations which are generally of smaller build than Caucasians because the criterion had been based on data from Caucasian cohorts\(^{16, 17, 23}\).

In consideration of the ethnic differences in prevalence and characteristics of MS, the International Diabetes Federation (IDF) proposed the worldwide MS criteria that includes a criterion for Japanese in April 2005\(^{24}\). According to the new IDF criteria, a person defined as having MS must have central obesity plus any two of the following four factors: 1) raised triglyceride level; 2) reduced HDL cholesterol; 3) raised blood pressure; 4) raised fasting plasma glucose. With regard to the definition of central obesity, ethnic specific values for waist circumference are used.

At almost the same time, in April of 2005, eight societies in Japan, the Japan Society for the Study of Obesity, the Japan Atherosclerosis Society, the Japan Diabetes Society, the Japanese Society of Hypertension, the Japanese Circulation Society, the Japanese Society of Nephrology, the Japanese Society on Thrombosis and Hemostasis, and the Japanese Society of Internal Medicine, proposed a new criterion of MS for Japanese\(^{25}\). According to the criterion, subjects are defined as having MS if they have central obesity plus any two of the following three factors: 1) dyslipidemia (raised TG level and/or reduced HDL cholesterol); 2) raised blood pressure; 3) raised fasting plasma glucose. To our knowledge no assessment of these new criteria has been performed among Japanese workers.

Pulse wave velocity (PWV) is an index of arterial stiffness\(^{26-27}\), and is regarded as a non-invasive marker of vascular damage\(^{28-30}\). Previous studies have demonstrated that PWV is a marker of the severity of cardiovascular disease\(^{31}\) and a predictor of future events\(^{32-34}\). As well, it is applicable as a screening tool for cardiovascular risk in a general population\(^{35-37}\). Recently, a simple device for measuring brachial-ankle PWV (baPWV) has been approved by the US Food and Drug Administration (FDA) as VP-2000/1600 cm/sec baPWV and were diagnosed as having abnormally high PWV values. In this study, past smokers and those who had never smoked were combined and compared with current smokers. All subjects in the study gave their informed consent for the use of personal information for analysis. The Ethics Committee of the Keio University School of Medicine, Tokyo, Japan, approved the study protocol.

Definition of metabolic syndrome

According to the new IDF criterion, the characteristics of MS in Japan are defined by the following cutoff limits and the subjects are defined as having MS if they have central obesity plus two or more of the other components: 1) central obesity (waist circumference ≥85 cm in men; ≥85 cm in women) and raised triglyceride level (triglyceride ≥150 mg/dl) or specific treatment for this lipid abnormality; 2) reduced HDL cholesterol (HDL cholesterol<40 mg/dl) or specific treatment for this lipid abnormality; 3) raised blood pressure (systolic blood pressure ≥130 mmHg, diastolic blood pressure ≥85 mmHg) or treatment of previously diagnosed hypertension; 4) raised fasting plasma glucose (fasting plasma glucose ≥100 mg/dl) or previously diagnosed type 2 diabetes.
According to the Japanese criterion, the characteristics of MS are defined by the following cutoff limits and the subjects are defined as having MS if they have central obesity plus two or more of the other components: 1) central obesity (waist circumference ≥85 cm in men); 2) dyslipidemia (triglyceride ≥150 mg/dL or/and HDL cholesterol <40 mg/dL) or medication for dyslipidemia; 3) raised blood pressure (systolic blood pressure ≥130 mmHg or/and diastolic blood pressure ≥85 mmHg) or medication for hypertension; 4) raised fasting plasma glucose (fasting plasma glucose ≥110 mg/dL) or medication for diabetes.

According to the NCEP III criterion, the characteristics of MS in men are defined by the following cutoff limits and subjects having three or more of the components are defined as having MS: 1) waist circumference >102 cm; 2) triglyceride ≥150 mg/dL or/and HDL cholesterol <40 mg/dL; 3) raised blood pressure (systolic blood pressure ≥130 mmHg or/and diastolic blood pressure ≥85 mmHg) or medication for hypertension; 4) raised fasting plasma glucose (fasting plasma glucose ≥110 mg/dL) or medication for diabetes.

Statistical analysis

All log-normally distributed variables (fasting plasma glucose, triglyceride, and HDL cholesterol) were log-transformed before statistical analysis and back-transformed for reporting. Differences in metabolic, anthropometric, and numerical demographic variables between individuals with and without MS were assessed using independent samples t testing. The χ^2 test was used to determine whether frequencies for categorical variables differed between these two groups of subjects. Age-, BMI-, systolic blood pressure (SBP)-, and smoking status-adjusted Pearson correlations were calculated to investigate the relationship between baPWV and MS as well as other metabolic and anthropometric variables. Multivariate logistic regression analysis was used to assess the relationship between risk of increased baPWV and each feature of MS. All analyses were performed with the SPSS statistical package for Windows version 12.0. All reported p-values were two-sided, and p<0.05 was considered statistically significant.

Table 1. Clinical and biochemical characteristics of all the subjects and the subjects with or without metabolic syndrome by the Japanese criterion and the new IDF criterion

<table>
<thead>
<tr>
<th>Variable</th>
<th>All subjects</th>
<th>Metabolic syndrome by the Japanese criterion</th>
<th>Metabolic syndrome by the new IDF criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>n</td>
<td>377</td>
<td>326</td>
<td>51</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>45.6 ± 11.6</td>
<td>44.3 ± 11.9</td>
<td>51.8 ± 6.34*</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>168.6 ± 6.37</td>
<td>168.6 ± 6.44</td>
<td>168.5 ± 5.93</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>65.8 ± 10.3</td>
<td>64.4 ± 9.69</td>
<td>74.6 ± 9.64*</td>
</tr>
<tr>
<td>BMI (kg/m^2)</td>
<td>23.1 ± 3.26</td>
<td>22.6 ± 3.06</td>
<td>26.2 ± 2.80*</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>83.2 ± 9.20</td>
<td>81.7 ± 8.74</td>
<td>92.8 ± 5.65*</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>134.0 ± 17.3</td>
<td>131.6 ± 16.3</td>
<td>149.4 ± 15.5*</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>81.4 ± 12.4</td>
<td>79.7 ± 11.9</td>
<td>92.2 ± 9.99*</td>
</tr>
<tr>
<td>Fasting plasma glucose (mg/dL)</td>
<td>96.3[1.24]</td>
<td>93.4[1.20]</td>
<td>116.7[1.37]*</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>205.8 ± 37.0</td>
<td>203.0 ± 35.6</td>
<td>223.9 ± 40.5*</td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td>112.9[1.74]</td>
<td>103.7[1.67]</td>
<td>195.0[1.64]*</td>
</tr>
<tr>
<td>HDL cholesterol (mg/dL)</td>
<td>54.1[1.28]</td>
<td>55.4[1.27]</td>
<td>46.6[1.31]*</td>
</tr>
<tr>
<td>baPWV (cm/sec)</td>
<td>1,396 ± 228.3</td>
<td>1,368 ± 209.1</td>
<td>1,574 ± 265.2*</td>
</tr>
</tbody>
</table>

Current smoking (%) | 58.6 | 58.9 | 56.9 | 58.5 | 59.4 |
Waist circumference ≥85 (cm) (%)	43.5	34.7	100*	31.9	100*
SBP ≥130 or DBP ≥85 (mmHg) (%)	38.5	30.7	88.2*	30	79.7*
Fasting plasma glucose ≥100 (mg/dL) (%)	30	–	–	21.7	70.3*
Fasting plasma glucose ≥110 (mg/dL) (%)	18.8	13.5	54.0*	–	–
Dyslipidemia (%)	31.3	23.2	84.0*	–	–
Triglyceride ≥150 (mg/dL) (%)	28.4	–	–	19.5	71.9*
HDL cholesterol<40 (mg/dL) (%)	9.3	–	–	6.4	23.4*

Data are means ± SD and % for normally distributed variables, and geometric means [GSD] for non-normally distributed variables. *p<0.001; †p=0.001 for the t test of differences in means or the χ^2 test of differences in proportions for continuous and categorical variables, respectively, in comparisons between subjects with or without metabolic syndrome. ‡Triglyceride ≥150 (mg/dL) or/and HDL cholesterol<40 (mg/dL).
Table 1 shows the clinical and biochemical characteristics of all the subjects and the subjects with or without MS by the new IDF criterion and the Japanese criterion. The prevalence of MS was 17.0% (n=64) in the new IDF criterion and 13.5% (n=51) in the Japanese criterion. Using the NCEP ATP III criterion, the prevalence of MS was 5.84% (data not shown).

In both the new criteria, subjects with MS were significantly older, and had higher BMI, waist circumference, SBP, DBP, fasting plasma glucose, triglyceride, and baPWV but smaller HDL cholesterol than the subjects without MS. Height and percentage of current smoking subjects did not differ between the two groups in both the criteria.

In the analysis of two subgroups, laborers and office workers, the prevalences of MS were not significantly different in both the new IDF and Japanese criteria (p=0.083 in the IDF criterion; p=0.111 in the Japanese criterion) (data not shown).

In the analysis of two subgroups, laborers and office workers, the prevalences of MS were not significantly different in both the new IDF and Japanese criteria (p=0.083 in the IDF criterion; p=0.111 in the Japanese criterion) (data not shown).

In the analysis of two subgroups, laborers and office workers, the prevalences of MS were not significantly different in both the new IDF and Japanese criteria (p=0.083 in the IDF criterion; p=0.111 in the Japanese criterion) (data not shown).

Results

Table 1 shows the clinical and biochemical characteristics of all the subjects and the subjects with or without MS by the new IDF criterion and the Japanese criterion. The prevalence of MS was 17.0% (n=64) in the new IDF criterion and 13.5% (n=51) in the Japanese criterion. Using the NCEP ATP III criterion, the prevalence of MS was 5.84% (data not shown).

In both the new criteria, subjects with MS were significantly older, and had higher BMI, waist circumference, SBP, DBP, fasting plasma glucose, triglyceride, and baPWV but smaller HDL cholesterol than the subjects without MS. Height and percentage of current smoking subjects did not differ between the two groups in both the criteria.

In the analysis of two subgroups, laborers and office workers, the prevalences of MS were not significantly different in both the new IDF and Japanese criteria (p=0.083 in the IDF criterion; p=0.111 in the Japanese criterion) (data not shown).

baPWV was significantly higher in those with MS than those without MS in both the criteria (1,563 ± 264.2 vs 1,362 ± 204.6 cm/sec, p<0.001 in the new IDF criterion; 1,574 ± 265.2 vs 1,368 ± 209.1 cm/sec, p<0.001 in the Japanese criterion) (Fig. 1). After adjustment for age, BMI, SBP, and smoking status, baPWV was still significantly higher in those with MS than those without MS (p=0.001 in the new IDF criterion; p=0.045 in the Japanese criterion). In the two subgroups, laborers and office workers, baPWV was also significantly higher in those with MS than those without MS in both the criteria (p<0.001 in both the criteria in both subgroups) (data not shown).

Subjects with different numbers of components of MS were placed in 6 and 5 subgroups, respectively, in the new IDF criterion and the Japanese criterion (graded from 0 through 5 and 4, respectively). Following stratification into the 6 and 5 subgroups, age-, BMI-, SBP-, and smoking status-adjusted baPWV significantly increased with increasing numbers of components of MS (1,257 ± 172.2, 1,371 ± 158.0, 1,438 ± 231.5, 1,648 ± 246.8, 1,669 ± 344.7 cm/sec, p for trend<0.01 in the new IDF criterion; 1,264 ± 171.1, 1,364 ± 169.9, 1,465 ± 235.4, 1,553 ± 236.9, 1,689 ± 281.1 cm/sec, p for trend<0.01 in the Japanese criterion) (Fig. 2). The subjects with 1, 2, 3,
and 4 components of MS had significantly higher baPWV than those without MS in both of the criteria ($p<0.001$ for all). It was also shown in the two subgroups, laborers and office workers, that baPWV increased with increasing number of components of MS after controlling for age, BMI, SBP, and smoking status (p for trend <0.01 in both criteria for laborers; p for trend <0.05 in both criteria for office workers) (data not shown).

To assess the utility of the two new criteria of MS to identify individuals with increased baPWV, we analyzed the risk of increased baPWV in subjects with MS controlling for age, BMI, SBP, and smoking status. The odds ratios for increased baPWV in subjects with MS were 2.07 (95%CI=0.90–4.81) in the Japanese criterion and 2.88 (1.30–6.36) in the new IDF criterion compared with those without MS (Table 2).

Discussion

In the present study, only 1.6% of all subjects were classified as having central obesity using the NCEP ATP III criterion of central obesity (data not shown) and the prevalence of MS by the NCEP ATP III criterion was 5.84%, which is a quarter of the prevalence of 24.0% reported in the U.S. using the NCEP ATP III criteria\(^4\). Because the NCEP ATP III criteria are based on data from Caucasian cohorts, the great difference of the prevalence of MS may reflect not only the prevalence itself but also the build between races and, thus, the NCEP ATP III criteria may not be appropriate for Japanese.

On the other hand, the prevalences of MS by the new IDF and Japanese criteria were 17.0% and 13.5%, respectively, in middle-aged Japanese men. Because the new criteria use ethnic specific values for waist circumference, the difference of MS prevalence between Japan (17.0% by the new IDF criterion; 13.5% by the new IDF criterion) and the U.S. (24.0% by the NCEP ATP III criterion) may reflect the true value of the difference of MS prevalence. Thus, the new two criteria may be better for diagnosis of MS than the NCEP ATP III criterion, although we understand that the present data cannot be simply compared with previous data obtained using the other criterion of MS.

The two new criteria are similar in that they regard central obesity as an indispensable item and include the criteria of dyslipidemia, hyperglycemia, and hypertension. However, there are two different points. First, the fasting plasma glucose threshold is higher in the Japanese criterion (≥110 mg/dL) than in the new IDF criterion (≥100 mg/dL), the number of subjects with MS increases by 9 to 60 (15.9%) which is almost the same number as that of the MS subjects by the new IDF criterion. Therefore, the difference in the prevalence of MS between the new IDF criterion (17.0%) and the Japanese criterion (13.5%) was mainly the result of a difference in the fasting plasma glucose threshold. Second, while the new IDF criterion uses two items of dyslipidemia, i.e. HDL cholesterol and triglyceride, for the criteria of MS on equal terms with other criteria, the Japanese criterion put the two items together as dyslipidemia. Weighting each trait equally in the new IDF criterion may overweight the contribution of dyslipidemia to MS, though it is unlikely that each trait confers equivalent disease risk.

Of the 377 subjects, 14 (3.7%) satisfied the IDF criterion of MS but did not satisfy the Japanese criterion of MS. Their mean value of baPWV was $1,482.4 \pm 290.1$ and it was not significantly different from that of those who satisfied both criteria (baPWV=$1,585.8 \pm 255.0$, $p=0.241$) or that of those who satisfied neither criteria (baPWV=$1,362.1 \pm 204.6$, $p=0.148$). Therefore, we could not conclude which of the two criteria was good for Japanese men in terms of a predictor for high baPWV.

The present study demonstrated that MS was significantly associated with a risk of increased baPWV after adjustment for the potential confounding factor of aortic stiffness in both the new criteria. This assures that multiple risk factors act together and exert an even greater influence on future events than expected by each risk factor alone. Our data concurs with a previous study which reported that clustered features of MS are related to increased aortic PWV\(^5\). However, in the previous study, the characteristics of MS were not defined by any proposed criteria but by their original criterion because the aim of the study was to investigate the association between clusters features of MS and increased aortic PWV.

Although the present study also demonstrated that the new IDF criterion was a better predictor of increased baPWV than the Japanese criterion, further studies are expected to assess the utility of the two new criteria to identify individuals with increased cardiovascular risk, because baPWV is a surrogate marker of cardiovascular disease.

The present study has several limitations. First, the number of subjects was relatively small and the results of this study need to be assessed in larger sample size. However, there was a strong and positive association of MS components with the level of baPWV after adjustment for potential confounding factors in both of the new criteria, and the relationship between baPWV and MS was not associated with the kind of occupation according to the analysis of the subgroups of laborers and office workers. Therefore, we suggest that the two new criteria are good for diagnosing MS among Japanese men in large populations. Second, we used a surrogate measurement of arterial stiffness and therefore may not have identified its prevalence precisely. However, previous studies have
shown that PWV reflects vascular damage and severity of cardiovascular disease, and predicts future events; moreover, PWV is a non-invasive marker. Therefore, PWV may have been an appropriate marker for arterial stiffness in the present study. Finally, our cross-sectional study design lacks information on the time sequence of events and, thus, does not permit identification of causal relationships.

In conclusion, the new IDF criterion and the Japanese criterion are both good for diagnosing MS among Japanese men, because a linear increase in baPWV occurred with increasing MS components after adjustment for potential confounding factors in both the new criteria. Our study was a cross-sectional study, and further prospective studies are expected to follow.

Acknowledgments: This research was supported by the Ministry of Economy, Trade and Industry, Japan (R&D for practical use of university-based technology by matching government and private funds). We thank all the staff and study participants.

References
16) CE Tan, S Ma, D Wai, SK Chew and ES Tai: Can we apply the National Cholesterol Education Program Adult Treatment Panel definition of the metabolic syndrome to Asians? Diabetes Care 27, 1182–1186 (2004)
18) ES Kim, SM Han, YI Kim, KH Song, MS Kim, WB Kim, JY Park and KU Lee: Prevalence and clinical characteristics of metabolic syndrome in a rural population of South Korea. Diabet Med 21, 1141–1143 (2004)
20) R Gupta, PC Deedwania, A Gupta, S Rastogi, RB Panwar and K Kothari: Prevalence of metabolic syndrome in an Indian urban population. Int J Cardiol

